Compute information-based estimates and distances.
entropy(.data, .base = 2, .norm = FALSE, .do.norm = NA, .laplace = 1e-12)
kl_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12)
js_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12, .norm.entropy = FALSE)
cross_entropy(.alpha, .beta, .base = 2, .do.norm = NA,
.laplace = 1e-12, .norm.entropy = FALSE)
Numeric vector. Any distribution.
Numeric. A base of logarithm.
Logical. If TRUE then normalises the entropy by the maximal value of the entropy.
If TRUE then normalises the input distributions to make them sum up to 1.
Numeric. A value for the laplace correction.
Numeric vector. A distribution of some random value.
Numeric vector. A distribution of some random value.
Logical. If TRUE then normalises the resulting value by the average entropy of input distributions.
A numeric value.