Usage
entropy(.data, .base = 2, .norm = FALSE, .do.norm = NA, .laplace = 1e-12)
kl_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12)
js_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12, .norm.entropy = FALSE)
cross_entropy(.alpha, .beta, .base = 2, .do.norm = NA,
.laplace = 1e-12, .norm.entropy = FALSE)
Arguments
- .data
Numeric vector. Any distribution.
- .base
Numeric. A base of logarithm.
- .norm
Logical. If TRUE then normalises the entropy by the maximal value of the entropy.
- .do.norm
If TRUE then normalises the input distributions to make them sum up to 1.
- .laplace
Numeric. A value for the laplace correction.
- .alpha
Numeric vector. A distribution of some random value.
- .beta
Numeric vector. A distribution of some random value.
- .norm.entropy
Logical. If TRUE then normalises the resulting value by the average entropy of input distributions.