Data Filtering
ImmunoMind – improving design of T-cell therapies using multi-omics and AI. Research and biopharma partnerships, more details: immunomind.io
support@immunomind.io
Source:vignettes/web_only_v0/repFilter_v3.Rmd
repFilter_v3.RmdData filtering
In many research cases, you would want to filter your data by
metadata, clonotypes parameters or genes, so for this purpose, you can
use the repFilter function.
Methods for filtering data
repFilter has 3 parameters: .method,
.query and .match.
Due to the ambiguity of ways to extract required data,
repFilter has the following methods:
.method = "by.meta"- filters data using information from meta data..method = "by.repertoire" or "by.rep"- filters data using information about repertoire statistics..method = "by.clonotype" or "by.cl"- filters data using information about clonotype sequences.
Parameter .query is a list specifying the condition for
filtering. Elements in the list are conditions, names of elements -
columns chosen for filtering. Names in elements should not be repeated
in .query. If you need to write a complex condition, you
can call the function multiple times.
Parameter .match denotes the type of match between
condition and value to filter:
-
exact- looks for exact match. -
substring- looks for substring. -
startswith- looks for string starting with the some pattern
Parameter .match can be applied to both by.meta and
by.clonotype
Load the package into the R environment:
For testing purposes we will use scdata and
immdata datasets from Immunarch library.
Load them by executing the following command:
data(immdata)Look at meta data from immdata datasets:
# look at the metadata
immdata$meta
# look at samples name in data
names(immdata$data)How to write conditions for filtering
Method by.meta
Example 1
Use include and exclude options to select a
subset of samples or repertoires that match given filter criterion.
These options accept strings.
Let’s filter your data by metadata immdata datasets when
Status is C and look at new meta data:
Note that we filter both metadata and data:
# filtered data
names(repFilter(immdata, .method = "by.meta", .query = list(Status = include("C")))$data)Filter out samples where Lane is not A:
repFilter(immdata, .method = "by.meta", .query = list(Lane = exclude("A")))$meta
names(repFilter(immdata, .method = "by.meta", .query = list(Lane = exclude("A")))$data)Filter for samples where Lane is B or C:
repFilter(immdata, .method = "by.meta", .query = list(Lane = include("B", "C")))$meta
names(repFilter(immdata, .method = "by.meta", .query = list(Lane = include("B", "C")))$data)Filter out samples where Lane is not A and not C:
Example 2
Use interval, lessthan(from minus infinity
to your value) or morethan(from your value to plus
infinity) to define interval values in the filter statement. These
options accept float. lessthan and morethan do
not include borders and interval includes the left border
and excludes the right border.
Filter for samples where Age is lower than 23:
repFilter(immdata, .method = "by.meta", .query = list(Age = lessthan(23)))$meta
names(repFilter(immdata, .method = "by.meta", .query = list(Age = lessthan(23)))$data)Filter for samples where Age is upper than 15:
repFilter(immdata, .method = "by.meta", .query = list(Age = morethan(15)))$meta
names(repFilter(immdata, .method = "by.meta", .query = list(Age = morethan(15)))$data)Filter for samples where Age is between 15 and 23:
repFilter(immdata, .method = "by.meta", .query = list(Age = interval(15, 23)))$meta
names(repFilter(immdata, .method = "by.meta", .query = list(Age = interval(15, 23)))$data)You can also use multiple conditions. In this case, the function returns values that matches both of this conditions (logical AND operator)
Filter for samples where Age is between 15 and 23 and Lane is B :
repFilter(immdata, .method = "by.meta", .query = list(Age = interval(15, 23), Lane = include("B")))$meta
names(repFilter(immdata, .method = "by.meta", .query = list(Age = interval(15, 23), Lane = include("B")))$data)Filter for samples where Age is between 15 and 23 and Lane is A or B:
Method by.repertoire (short alias is
by.rep)
Example 3
Filter for repertoires containing more than 6000 clonotypes:
repFilter(immdata, .method = "by.repertoire", .query = list(n_clonotypes = morethan(6000)))$meta
repFilter(immdata, .method = "by.rep", .query = list(n_clonotypes = morethan(6000)))$meta # Works both with by.rep and by.repertoireBe careful, filtering by.repertoire or
by.rep could also change a number of repertoires(samples)
in your data:
names(repFilter(immdata, .method = "by.repertoire", .query = list(n_clonotypes = morethan(6000)))$data)Filter for repertoires containing less than 6000 clonotypes:
repFilter(immdata, .method = "by.repertoire", .query = list(n_clonotypes = lessthan(6000)))$meta
repFilter(immdata, .method = "by.rep", .query = list(n_clonotypes = lessthan(6000)))$meta # Works both with by.rep and by.repertoire
names(repFilter(immdata, .method = "by.repertoire", .query = list(n_clonotypes = lessthan(6000)))$data)Method by.clonotype (short alias
isby.cl)
Example 4
Filter out all noncoding clonotypes from immdata. As you
see, immdata dataset doesn’t contain any noncoding
clonotypes:
repFilter(immdata, .method = "by.clonotype", .query = list(CDR3.aa = exclude("partial", "out_of_frame")))$metaNote that filtering by.clonotype or by.cl
works within repertoire(sample). Repertoire(sample) could be removed
from your data only in case if all clonotypes in sample do not meet the
condition:
names(repFilter(immdata, .method = "by.clonotype", .query = list(CDR3.aa = exclude("partial", "out_of_frame")))$data)Filter out clonotypes that have only one clone:
Example 5
In method by.clonotype or by.cl, there is
an extra argument .match. The .match argument
can has the following values: - exact - looks for exact
match in gene names - substring- looks for substring in
gene names - startswith - looks for gene names starting
with the chosen pattern
Filter out all clonotypes within samples with V gene ‘TRBV1’ or ‘TRGV11’
repFilter(immdata, .method = "by.clonotype", .query = list(V.name = exclude("TRBV1", "TRGV11")), .match = "exact")Filter out all clonotypes within samples where V gene name contains substrings ‘TRBV1’ or ‘TRGV11’
repFilter(immdata, .method = "by.clonotype", .query = list(V.name = exclude("TRBV1", "TRGV11")), .match = "substring")Filter out all clonotypes within samples where V gene name starts with ‘TRBV1’ or ‘TRGV11’
Using repFilter function for single-cell repertoire
data analysis
We will use scdata datasets from
Immunarch library. Load them by executing the following
command:
data(scdata)Look at meta data from scdata datasets:
# look at the metadata
scdata$meta
# look at samples name in data
names(scdata$data)repFiter can also work with single-cell data containing
not only meta and ’data`, but also extra information,
e.g. about clusters:
repFilter(scdata, .method = "by.clonotype", .query = list(CDR3.aa = exclude("partial", "out_of_frame")))Create a new dataset with cluster-specific immune repertoires (for more information see Single-cell tutorials):
scdata_cl <- select_clusters(scdata, scdata$bc_cluster, "Cluster")
scdata_cl$metaAnd compare the number of clonotypes between clusters:
vis(repExplore(scdata_cl$data, .method = "volume"))Compare J gene usage between three clusters:
sc_active <- geneUsage(repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Activ")))$data, "hs.trbj", .norm = T)
p1 <- vis(sc_active)
p1
sc_memory <- geneUsage(repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Memory")))$data, "hs.trbj", .norm = T)
p2 <- vis(sc_memory)
p2
sc_naive <- geneUsage(repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Naive")))$data, "hs.trbj", .norm = T)
p3 <- vis(sc_naive)
p3Compare gene usage of IGHJ4 between three clusters:
scdata_active <- repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Activ")))
scdata_active <- repFilter(scdata_active, .method = "by.cl", .query = list(J.name = include("IGHJ4")), .match = "substring")
sc_active <- geneUsage(scdata_active$data, "hs.trbj", .norm = T)
p1 <- vis(sc_active)
scdata_memory <- repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Memory")))
scdata_memory <- repFilter(scdata_memory, .method = "by.cl", .query = list(J.name = include("IGHJ4")), .match = "substring")
sc_memory <- geneUsage(scdata_memory$data, "hs.trbj", .norm = T)
p2 <- vis(sc_memory)
scdata_naive <- repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Naive")))
scdata_naive <- repFilter(scdata_naive, .method = "by.cl", .query = list(J.name = include("IGHJ4")), .match = "substring")
sc_naive <- geneUsage(scdata_naive$data, "hs.trbj", .norm = T)
p3 <- vis(sc_naive)
p1 + p2 + p3Look at the coding clonotypes in each cluster. Note that there aren’t any noncoding clonotypes in the datasets:
scdata_active <- repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Activ")))
scdata_active <- repFilter(scdata_active, .method = "by.clonotype", .query = list(CDR3.aa = exclude("partial", "out_of_frame")))
exp_vol <- repExplore(scdata_active$data, .method = "volume")
p1 <- vis(exp_vol)
exp_vol <- repExplore(repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Activ")))$data, .method = "volume")
p2 <- vis(exp_vol)
p1 + p2
scdata_memory <- repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Memory")))
scdata_memory <- repFilter(scdata_memory, .method = "by.clonotype", .query = list(CDR3.aa = exclude("partial", "out_of_frame")))
exp_vol <- repExplore(scdata_memory$data, .method = "volume")
p1 <- vis(exp_vol)
exp_vol <- repExplore(repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Memory")))$data, .method = "volume")
p2 <- vis(exp_vol)
p1 + p2
scdata_naive <- repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Naive")))
scdata_naive <- repFilter(scdata_naive, .method = "by.clonotype", .query = list(CDR3.aa = exclude("partial", "out_of_frame")))
exp_vol <- repExplore(scdata_naive$data, .method = "volume")
p1 <- vis(exp_vol)
exp_vol <- repExplore(repFilter(scdata_cl, .method = "by.meta", .query = list(Cluster = include("Naive")))$data, .method = "volume")
p2 <- vis(exp_vol)
p1 + p2